Atilgan, Ahmet’s team published research in Journal of the American Chemical Society in 2020 | CAS: 5471-63-6

1,3-Diphenylisobenzofuran(cas: 5471-63-6) is a fluorescent dye. 1,3-Diphenylisobenzofuran is the model compound in studies of singlet fission.Formula: C20H14O

Formula: C20H14OIn 2020 ,《Post-synthetically elaborated BODIPY-based porous organic polymers (POPs) for the photochemical detoxification of a sulfur mustard simulant》 appeared in Journal of the American Chemical Society. The author of the article were Atilgan, Ahmet; Cetin, M. Mustafa; Yu, Jierui; Beldjoudi, Yassine; Liu, Jian; Stern, Charlotte L.; Cetin, Furkan M.; Islamoglu, Timur; Farha, Omar K.; Deria, Pravas; Stoddart, J. Fraser; Hupp, Joseph T.. The article conveys some information:

Designing new materials for the effective detoxification of chem. warfare agents (CWAs) is of current interest given the recent use of CWAs. Although halogenated boron-dipyrromethene derivatives (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene or BDP or BODIPY) at the 2 and 6 positions have been extensively explored as efficient photosensitizers for generating singlet oxygen (1O2) in homogeneous media, their utilization in the design of porous organic polymers (POPs) has remained elusive due to the difficulty of controlling polymerization processes through cross-coupling synthesis pathways. Our approach to overcome these difficulties and prepare halogenated BODIPY-based porous organic polymers (X-BDP-POP where X = Br or I) represents an attractive alternative through post-synthesis modification (PSM) of the parent hydrogenated polymer. Upon synthesis of both the parent polymer, H-BDP-POP, and its post-synthetically modified derivatives, Br-BDP-POP and I-BDP-POP, the BET surface areas of all POPs have been measured and found to be 640, 430, and 400 m2·g-1, resp. In addition, the insertion of heavy halogen atoms at the 2 and 6 positions of the BODIPY unit leads to the quenching of fluorescence (both polymer and solution-phase monomer forms) and the enhancement of phosphorescence (particularly for the iodo versions of the polymers and monomers), as a result of efficient intersystem crossing. The heterogeneous photocatalytic activities of both the parent POP and its derivatives for the detoxification of the sulfur mustard simulant, 2-chloroethyl Et sulfide (CEES), have been examined; the results show a significant enhancement in the generation of singlet oxygen (1O2). Both the bromination and iodination of H-BDP-POP served to shorten by 5-fold of the time needed for the selective and catalytic photo-oxidation of CEES to 2-chloroethyl Et sulfoxide (CEESO). The experimental part of the paper was very detailed, including the reaction process of 1,3-Diphenylisobenzofuran(cas: 5471-63-6Formula: C20H14O)

1,3-Diphenylisobenzofuran(cas: 5471-63-6) is a fluorescent dye. 1,3-Diphenylisobenzofuran is the model compound in studies of singlet fission.Formula: C20H14O

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Nie, Xiaolin’s team published research in Materials Science & Engineering, C: Materials for Biological Applications in 2020 | CAS: 5471-63-6

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used to study the single crystal molecular structure and solution photophysical properties of DPBF.Synthetic Route of C20H14O

《Carbon quantum dots embedded electrospun nanofibers for efficient antibacterial photodynamic inactivation》 was written by Nie, Xiaolin; Wu, Shuanglin; Mensah, Alfred; Lu, Keyu; Wei, Qufu. Synthetic Route of C20H14O And the article was included in Materials Science & Engineering, C: Materials for Biological Applications in 2020. The article conveys some information:

Faced with the emergence and proliferation of antibiotic resistant pathogens, novel nonspecific materials and approaches are required. Herein, we employed electrospinning technol. to fabricate nanofibers with antibacterial photodynamic inactivation. This material combines polyacrylonitrile, as a photostable polymer, and biocompatible carbon quantum dots. The resulted nanofibers were successfully characterized by phys. and spectroscopic methods. The microbicidal reactive oxygen species (i.e., singlet oxygen) upon illumination was confirmed, and cytotoxicity assay demonstrated that the nanofibers had low cytotoxicity and good biocompatibility. Antibacterial photodynamic inactivation studies demonstrated broad antibacterial efficacy of Gram-neg. Escherichia coli ATCC-8099 (99.9999+%, 6 log units inactivation), Gram-neg. Pseudomonas aeruginosa CMCC (B) 10104 (99.9999+%, 6 log units inactivation), and Gram-pos. Bacillus subtilis CMCC (B) 63501 (99.9999+%, 6 log units inactivation) upon illumination with visible light (Xe lamp, 500 W, 12 cm sample distance). However modest inactivation results were observed against Gram-pos. Staphylococcus aureus ATCC-6538 (98.3%, 1.8 log units inactivation). Owing to the prepared nanofibers exhibiting efficient antibacterial activity against Gram-neg. and Gram-pos. bacteria, such materials could be potentially used in anti-infective therapy. After reading the article, we found that the author used 1,3-Diphenylisobenzofuran(cas: 5471-63-6Synthetic Route of C20H14O)

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used to study the single crystal molecular structure and solution photophysical properties of DPBF.Synthetic Route of C20H14O

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Rehman, Mehreen’s team published research in Journal of Pharmaceutical Sciences (Philadelphia, PA, United States) in 2021 | CAS: 5471-63-6

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used to study the single crystal molecular structure and solution photophysical properties of DPBF.Formula: C20H14O

Rehman, Mehreen; Raza, Abida; Khan, Jamshaid Ali; Zia, M. Aslam published their research in Journal of Pharmaceutical Sciences (Philadelphia, PA, United States) in 2021. The article was titled 《Laser Responsive Cisplatin-Gold Nano-Assembly Synergizes the Effect of Cisplatin With Compliance》.Formula: C20H14O The article contains the following contents:

Cisplatin therapy faces low bioavailability and clastogenic potential limitations. Early payload leakage of nanocarriers may impair adequate therapeutic efficacy. We propose encapsulation of cisplatin in such nanocarrier that can be externally stimulated for high payload release and enhanced toxicity at site of action. Cisplatin conjugated gold nanorods (Pt-AuNRs) have been synthesized and characterized through UV visible spectroscopy, dynamic light scattering and transmission electron microscopy. Physico-chem. characterization through X-ray photon spectrometry confirms the covalent linkage between linker and aquated cisplatin with AuNRs. Laser exposure (850 nm, CW) enabled ∼15-fold payload release from Pt-AuNRs nano-assembly, which is quite high (P < 0.0001) compared to non-stimulated conditions. The median growth inhibitory concentration (GI50) after laser exposure of Pt-AuNRs was ∼11- and 13-fold low compared to corresponding Pt-AuNRs without laser exposure and cisplatin resp., in sarcoma cells. Synergistic therapeutic difference is more significant (P < 0.01), at lower concentrations of Pt-AuNRs (0.5-10μg/mL). Pt-AuNRs photothermal therapy indicates a convincible association of over-production of reactive oxygen species (P < 0.0001) and synergistic therapeutic efficacy. Clastogenic potential is found non-significant for Pt-AuNRs (10μg/mL). Cisplatin nanoconjugate shows biocompatibility against blood cells. In conclusion, laser-stimulated Pt-AuNRs appear a promising drug delivery with synergistic toxic potential against cancer while attenuating cisplatin toxicity. The experimental process involved the reaction of 1,3-Diphenylisobenzofuran(cas: 5471-63-6Formula: C20H14O)

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used to study the single crystal molecular structure and solution photophysical properties of DPBF.Formula: C20H14O

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Meng, Xiang-Zhen’s team published research in Acta Crystallographica, Section E: Crystallographic Communications in 2020 | CAS: 5471-63-6

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used to study the single crystal molecular structure and solution photophysical properties of DPBF.COA of Formula: C20H14O

《Crystal structure of dimethyl 5-(4-ethylphenyl)-4-[(4-ethylphenyl)ethynyl]-6,11-diphenyl-1,3,6,11-tetrahydro-2H-6,11-epoxycyclopenta[a]anthracene-2,2-dicarboxylate》 was published in Acta Crystallographica, Section E: Crystallographic Communications in 2020. These research results belong to Meng, Xiang-Zhen; Cheng, Dong. COA of Formula: C20H14O The article mentions the following:

In the central fused ring system of the title compound, C51H42O5, all of the five-membered rings are in an envelope conformation. The dihedral angle between the two benzene rings in the fused ring system is 74.66 (7)°. In the crystal, mols. are linked by C-H···π interactions, forming a layer parallel to the ab plane. Each mol. acts as a double donor as well as a double acceptor of the C-H···π interactions. Hirshfeld surface anal. and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H···H (61.4%) and C···H/H···C (25.3%) contacts. In the experimental materials used by the author, we found 1,3-Diphenylisobenzofuran(cas: 5471-63-6COA of Formula: C20H14O)

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used to study the single crystal molecular structure and solution photophysical properties of DPBF.COA of Formula: C20H14O

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Yin, Juanjuan’s team published research in Journal of Materials Chemistry B: Materials for Biology and Medicine in 2021 | CAS: 5471-63-6

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used as quencher during the photoinactivation of TA-3 mouse mammary carcinoma cells containing hematoporphyrin.Application In Synthesis of 1,3-Diphenylisobenzofuran

Yin, Juanjuan; Jiang, Xu; Sui, Guomin; Du, Yingying; Xing, Enyun; Shi, Ruijie; Gu, Chengzhi; Wen, Xiaona; Feng, Yaqing; Shan, Zhongqiang; Meng, Shuxian published an article in 2021. The article was titled 《The tumor phototherapeutic application of nanoparticles constructed by the relationship between PTT/PDT efficiency and 2,6- and 3,5-substituted BODIPY derivatives》, and you may find the article in Journal of Materials Chemistry B: Materials for Biology and Medicine.Application In Synthesis of 1,3-Diphenylisobenzofuran The information in the text is summarized as follows:

BODIPY dyes have recently been used for photothermal and photodynamic therapy of tumors. However, complex multi-material systems, multiple excitation wavelengths and the unclear relationship between BODIPY structures and their PTT/PDT efficiency are still major issues. In our study, nine novel BODIPY near-IR dyes were designed and successfully synthesized and then, the relationships between BODIPY structures and their PTT/PDT efficiency were investigated in detail. The results showed that modifications at position 3,5 of the BODIPY core with conjugated structures have better effects on photothermal and photodynamic efficiency than the modifications at position 2,6 with halogen atoms. D. functional theory (DFT) calculations showed that this is mainly due to the extension of the conjugated chain and the photoinduced electron transfer (PET) effect. By encapsulating BDPX-M with amphiphilic DSPE-PEG2000-RGD and lecithin, the obtained NPs not only show good water solubility and biol. stability, but also could act as superior agents for photothermal and photodynamic synergistic therapy of tumors. Finally, we obtained BODIPY NPs that exhibited excellent photothermal and photodynamic effects at the same time under single irradiation with an 808 nm laser (photothermal conversion efficiency: 42.76%, A/A0: ~0.05). In conclusion, this work provides a direction to design and construct phototherapeutic nanoparticles based on BODIPY dyes for tumor treatment. The experimental part of the paper was very detailed, including the reaction process of 1,3-Diphenylisobenzofuran(cas: 5471-63-6Application In Synthesis of 1,3-Diphenylisobenzofuran)

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used as quencher during the photoinactivation of TA-3 mouse mammary carcinoma cells containing hematoporphyrin.Application In Synthesis of 1,3-Diphenylisobenzofuran

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Zhou, Junli’s team published research in Journal of Materials Chemistry B: Materials for Biology and Medicine in 2021 | CAS: 5471-63-6

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used as quencher during the photoinactivation of TA-3 mouse mammary carcinoma cells containing hematoporphyrin.Product Details of 5471-63-6

Zhou, Junli; Li, Yite; Wang, Lei; Xie, Zhigang published an article in 2021. The article was titled 《Structural diversity of nanoscale zirconium porphyrin MOFs and their photoactivities and biological performances》, and you may find the article in Journal of Materials Chemistry B: Materials for Biology and Medicine.Product Details of 5471-63-6 The information in the text is summarized as follows:

Photoactive MOF-based delivery systems are highly attractive for photodynamic therapy (PDT), but the fundamental interplay among structural parameters and photoactivity and biol. properties of these MOFs remains unclear. Herein, porphyrinic MOF isomers (TCPP-MOFs), constructing using the same building blocks into distinct topologies, have been selected as ideal models to understand this problem. Both the intramol. distances and mol. polarization within TCPP-MOFs isomers collectively contribute to the photoactivity of generating reactive oxygen species. Remarkably, the morphol.-determined endocytic pathways and cytotoxicity, as well as good biocompatibility have been confirmed for TCPP-MOF isomers without any chem. modification for the first time. Besides the topol.-dependent photoactive regulation, this work also provides in-depth insights into the biol. effect from the MOF nanoparticles with controllable structural factors, benefiting further in vivo applications and clin. transformation. In the part of experimental materials, we found many familiar compounds, such as 1,3-Diphenylisobenzofuran(cas: 5471-63-6Product Details of 5471-63-6)

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used as quencher during the photoinactivation of TA-3 mouse mammary carcinoma cells containing hematoporphyrin.Product Details of 5471-63-6

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Dai, Liqun’s team published research in Journal of Materials Chemistry B: Materials for Biology and Medicine in 2021 | CAS: 5471-63-6

1,3-Diphenylisobenzofuran(cas: 5471-63-6) is a fluorescent dye. 1,3-Diphenylisobenzofuran is the model compound in studies of singlet fission.Application of 5471-63-6

Application of 5471-63-6In 2021 ,《PSMA-targeted melanin-like nanoparticles as a multifunctional nanoplatform for prostate cancer theranostics》 appeared in Journal of Materials Chemistry B: Materials for Biology and Medicine. The author of the article were Dai, Liqun; Shen, Guohua; Wang, Yuanyuan; Yang, Peng; Wang, Hong; Liu, Zhenhua. The article conveys some information:

Prostate-specific membrane antigen (PSMA) is highly expressed on the surface of most prostate tumor cells and is considered a promising target for prostate cancer imaging and treatment. It is possible to establish a PSMA-targeted theranostic probe to achieve early diagnosis and treatment of this cancer type. In this contribution, we prepared a multifunctional melanin-like polydopamine (PDA) nanocarrier decorated with a small-mol. PSMA inhibitor, N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-(S)-l-lysine (DCL). PDA-DCL was then functionalized with perfluoropentane (PFP) and loaded with the photosensitizer chlorin e6 (Ce6) to give Ce6@PDA-DCL-PFP, which was successfully used for ultrasound-guided combined photodynamic/photothermal therapy (PDT/PTT) of prostate cancer. Compared with the corresponding non-targeted probe (Ce6@PDA-PEG-PFP), our targeted probe induced higher cellular uptake in vitro (6.5-fold) and more tumor accumulation in vivo (4.6-fold), suggesting strong active targeting capacity. Meanwhile, this new nanoplatform significantly enhanced the ultrasound contrast signal at the tumor site in vivo, thus facilitating precise and real-time detection of the tumor. In addition, this Ce6-loaded PDA nanoplatform produced a synergistic effect of PDT and PTT under 660 nm and 808 nm irradiation, inducing a more efficient killing effect compared with the individual therapy in vitro and in vivo. Furthermore, the tumor in the targeted group was more effectively suppressed than that in the non-targeted group under the same irradiation condition. This multifunctional probe may hold great potential for precise and early theranostics of prostate cancer.1,3-Diphenylisobenzofuran(cas: 5471-63-6Application of 5471-63-6) was used in this study.

1,3-Diphenylisobenzofuran(cas: 5471-63-6) is a fluorescent dye. 1,3-Diphenylisobenzofuran is the model compound in studies of singlet fission.Application of 5471-63-6

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Cui, Tianming’s team published research in International Journal of Pharmaceutics (Amsterdam, Netherlands) in 2021 | CAS: 5471-63-6

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used as quencher during the photoinactivation of TA-3 mouse mammary carcinoma cells containing hematoporphyrin.Electric Literature of C20H14O

Cui, Tianming; Li, Shukai; Chen, Shengfu; Liang, Ying; Sun, Haotian; Wang, Longgang published an article in 2021. The article was titled 《””Stealth”” dendrimers with encapsulation of indocyanine green for photothermal and photodynamic therapy of cancer》, and you may find the article in International Journal of Pharmaceutics (Amsterdam, Netherlands).Electric Literature of C20H14O The information in the text is summarized as follows:

Poly(amido amine) dendrimers and indocyanine green have inevitable interaction with proteins and cells, which induces biol. toxicity and reduces therapeutic efficacy in vivo. To overcome these shortcomings, a new drug delivery system G5MEK7C(n)-ICG with a “”stealth”” layer was prepared The surface of G5MEK7C(n)-ICG was modified with double-layer super hydrophilic zwitterionic materials. In the “”stealth”” double-layer structure, the outer layer was consisted of zwitterionic Glu-Lys-Glu-Lys-Glu-Lys-Cys (EK7) peptide, and the inner layer was composed of amino and carboxyl groups with a ratio of 1:1. DLS results showed that the average hydrodynamic size of G5MEK7C(n)-ICG was about 25-30 nm, and the zeta potential was proven to undergo a slight charge reversal with the increasing pH values of solutions Furthermore, G5MEK7C(n)-ICG exhibited excellent biocompatibility to red blood cells and proteins resistance. Photothermal and photodynamic experiments demonstrated that G5MEK7C(n)-ICG had a good photothermal conversion effect and generated singlet oxygen (1O2) under laser irradiation The MTT and hemolysis results showed that the toxicity of G5 PAMAM was significantly reduced after modification double-layer structure. Cytotoxicity studies and flow cytometry showed G5MEK7C(70)-ICG under laser irradiation had a good effect on killing A549 cells. More importantly, the tumor inhibition rate of mice treated with G5MEK7C(70)-ICG (under laser irradiation) was 78.2% in vivo, which was higher than that of mice treated with free ICG. Compared with free ICG, G5MEK7C(70)-ICG caused less damage to the liver according to the enzyme activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Therefore, dendrimers modified with a zwitterionic double layer will be a promising candidate as a drug delivery system. In the experiment, the researchers used 1,3-Diphenylisobenzofuran(cas: 5471-63-6Electric Literature of C20H14O)

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used as quencher during the photoinactivation of TA-3 mouse mammary carcinoma cells containing hematoporphyrin.Electric Literature of C20H14O

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Serain, Alessandra F.’s team published research in Journal of Photochemistry and Photobiology, B: Biology in 2021 | CAS: 5471-63-6

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used to study the single crystal molecular structure and solution photophysical properties of DPBF.Safety of 1,3-Diphenylisobenzofuran

Serain, Alessandra F.; Morosi, Lavinia; Ceruti, Tommaso; Matteo, Cristina; Meroni, Marina; Minatel, Elaine; Zucchetti, Massimo; Salvador, Marcos J. published their research in Journal of Photochemistry and Photobiology, B: Biology in 2021. The article was titled 《Betulinic acid and its spray dried microparticle formulation: In vitro PDT effect against ovarian carcinoma cell line and in vivo plasma and tumor disposition》.Safety of 1,3-Diphenylisobenzofuran The article contains the following contents:

The race against ovarian cancer continue to motivate the research worldwide. It is known that many antitumor drugs have limited penetration into solid tumor tissues due to its microenvironment, thus contributing to their low efficacy. Therapeutic modalities have been exploited to elicit antitumor effects based on microenvironment of tumor, including Photodynamic therapy (PDT). Prospection of natural small mols. and nanotechnol. are important tools in the development of new ways of obtaining photoactive compounds that are biocompatible. The Betulinic acid (BA) has shown potential biol. effect as bioactive drug, but it has low water solubility Thus, in the present study, owing to the poor solubility of the BA, its free form (BAF) was compared to a spray dried microparticle betulinic acid/HP-β-CD formulation (BAC) aiming to assess the BAF and BAC efficacy as a photosensitizer in PDT for application in ovarian cancer. BAF and BAC were submitted to assays in the presence of LED (λ = 420 nm) under different conditions (2.75 J/cm2, 5.5 J/cm2, and 11 J/cm2) and in absence of irradiation, after 5 min or 4 h of contact with ovarian carcinoma cells (A2780) or fibroblast murine cells (3T3). Furthermore, HPLC-MS/MS and MALDI-MSI methods were developed and validated in plasma and tumor of mice proving suitable for in vivo studies. The results found a greater photoinduced cytotoxic effect for the BAC at low concentration for A2780 when irradiated with LED with similar results for fluorescence microscopy. The results motivate us to continue the studies with the BA as a potential antitumor bioactive compound The experimental part of the paper was very detailed, including the reaction process of 1,3-Diphenylisobenzofuran(cas: 5471-63-6Safety of 1,3-Diphenylisobenzofuran)

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used to study the single crystal molecular structure and solution photophysical properties of DPBF.Safety of 1,3-Diphenylisobenzofuran

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Hou, Yufei’s team published research in International Journal of Pharmaceutics (Amsterdam, Netherlands) in 2022 | CAS: 5471-63-6

1,3-Diphenylisobenzofuran(cas: 5471-63-6) is a fluorescent dye. 1,3-Diphenylisobenzofuran is the model compound in studies of singlet fission.Computed Properties of C20H14O

Computed Properties of C20H14OIn 2022 ,《Near-infrared triggered ropivacaine liposomal gel for adjustable and prolonged local anaesthesia》 was published in International Journal of Pharmaceutics (Amsterdam, Netherlands). The article was written by Hou, Yufei; Meng, Xiangxue; Zhang, Shixin; Sun, Fengying; Liu, Wenhua. The article contains the following contents:

Local analgesics effectively allow patients to relieve postoperative pain and reduce the need for inhaled general anesthetics or opioids. Compared with other similar long-acting local anesthetics, ropivacaine (Rop) is widely used due to its potential to minimize cardiotoxicity. However, the relatively short duration of Rop efficacy, which lasts for several hours after injection, is considered insufficient for long-term acute and chronic pain treatment. At present, repeated injections or indwelling catheters are used to achieve long-term drug delivery, which can easily cause infection and inflammation. To achieve externally controllable analgesia for a prolonged time, we prepared near-IR (NIR)-responsive Rop liposomes (Rop@Lip) containing photosensitizers PdPC(OBu)8 and unsaturated phospholipid DLPC. The particle size of the Rop@Lip was 234.73 ± 5.21 nm, the PDI was 0.42 ± 0.02, and the drug encapsulation rate was 94.62 ± 1.1%. The release of Rop was highly NIR-dependent in vitro and in vivo. To ensure that the liposomes reside around the nerve for an extended period, we next designed an in situ gel with chitosan (CS) and β-sodium glycerophosphate (β-GP) to form a liposomal gel (Lip/Gel). This Lip/Gel composite drug delivery system could be retained in vivo for 10 d, reduce the side effects caused by drug overdose, and prolong the duration of efficacy. In summary, the NIR-responsive Rop composite drug delivery system generated in this paper can effectively solve the shortcomings of traditional local injections, reduce the toxicity and side effects of free Rop, and provide a basis for a light-responsive delivery system of analgesic drugs. In the part of experimental materials, we found many familiar compounds, such as 1,3-Diphenylisobenzofuran(cas: 5471-63-6Computed Properties of C20H14O)

1,3-Diphenylisobenzofuran(cas: 5471-63-6) is a fluorescent dye. 1,3-Diphenylisobenzofuran is the model compound in studies of singlet fission.Computed Properties of C20H14O

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem