Entradas, Tiago’s team published research in Journal of Photochemistry and Photobiology, B: Biology in 2020 | CAS: 5471-63-6

1,3-Diphenylisobenzofuran(cas: 5471-63-6) is a fluorescent dye. 1,3-Diphenylisobenzofuran is the model compound in studies of singlet fission.Application of 5471-63-6

Application of 5471-63-6In 2020 ,《The detection sensitivity of commonly used singlet oxygen probes in aqueous environments》 appeared in Journal of Photochemistry and Photobiology, B: Biology. The author of the article were Entradas, Tiago; Waldron, Sarah; Volk, Martin. The article conveys some information:

The sensitivity for singlet oxygen (1O2) of two convenient 1O2 probes, 1,3-diphenylisobenzofuran (DPBF) and 9,10-Anthracenediyl-bis(methylene)dimalonic acid (ABDA), has been investigated in different aqueous environments. Both probes are com. available at reasonable cost and can be used with standard UV-vis spectrometers. Although DPBF is not soluble in neat water and is not specific to the detection of 1O2, it has very high, essentially diffusion-limited, reactivity towards 1O2; it can trap up to 50% of all 1O2 created in alc./water or micellar solution, and even more when replacing H2O by D2O, which makes it highly useful when the process under investigation does not yield much 1O2. On the other hand, ABDA has a much lower reactivity, reacting with only 2% of the singlet oxygen generated in H2O, as well as a smaller extinction coefficient, resulting in a much smaller spectroscopic response, but is soluble in neat water and is specific for 1O2, allowing for discrimination from other reactive oxygen species. The results presented here not only allow a comparative assessment of the usefulness of the two 1O2 probes, but also provide a reference for an accurate absolute quantification of the amount of 1O2 generated in an experiment from the observed absorbance bleach. In addition to this study using 1,3-Diphenylisobenzofuran, there are many other studies that have used 1,3-Diphenylisobenzofuran(cas: 5471-63-6Application of 5471-63-6) was used in this study.

1,3-Diphenylisobenzofuran(cas: 5471-63-6) is a fluorescent dye. 1,3-Diphenylisobenzofuran is the model compound in studies of singlet fission.Application of 5471-63-6

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Wang, Chenyuan’s team published research in Chemical Communications (Cambridge, United Kingdom) in 2021 | CAS: 5471-63-6

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used to study the single crystal molecular structure and solution photophysical properties of DPBF.Related Products of 5471-63-6

Wang, Chenyuan; Xiong, Chuxiao; Li, Zhike; Hu, Liefeng; Wei, Jianshuang; Tian, Jian published an article in 2021. The article was titled 《Defect-engineered porphyrinic metal-organic framework nanoparticles for targeted multimodal cancer phototheranostics》, and you may find the article in Chemical Communications (Cambridge, United Kingdom).Related Products of 5471-63-6 The information in the text is summarized as follows:

Defect-engineered porphyrinic MOF nanoparticles were fabricated with an in situ one-pot protocol using cypate as the co-ligand and modulator. This multifunctional nanoplatform integrated the photothermal and multimodal imaging properties of cypate with the photodynamic effects of porphyrins, thus achieving targeted multimodal cancer phototheranostics after folic acid modification. After reading the article, we found that the author used 1,3-Diphenylisobenzofuran(cas: 5471-63-6Related Products of 5471-63-6)

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used to study the single crystal molecular structure and solution photophysical properties of DPBF.Related Products of 5471-63-6

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Luo, Xiangjie’s team published research in Chemical Communications (Cambridge, United Kingdom) in 2021 | CAS: 5471-63-6

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used to study the single crystal molecular structure and solution photophysical properties of DPBF.Computed Properties of C20H14O

Luo, Xiangjie; Chi, Xiaoqin; Lin, Yaying; Yang, Zhaoxuan; Lin, Hongyu; Gao, Jinhao published their research in Chemical Communications (Cambridge, United Kingdom) in 2021. The article was titled 《A camptothecin prodrug induces mitochondria-mediated apoptosis in cancer cells with cascade activations》.Computed Properties of C20H14O The article contains the following contents:

Mitochondria are crucial regulators of the intrinsic pathway of apoptosis. Herein, we report a photosensitizer-conjugated camptothecin (CPT)-based prodrug for combinative chemo-photodynamic treatment of solid tumors with cascade activations. Upon light irradiation, our prodrug can effectively target the mitochondria of cancer cells, generate singlet oxygen to increase the level of reactive oxygen species (ROS) and trigger ROS-responsive release of CPT, which synergistically induce mitochondrial damage and cause the apoptosis of cancer cells, therefore achieving high therapeutic efficacy for solid tumors and minimized adverse effects to normal tissues. Our prodrug holds great promise as a potent and inspiring means for cancer treatment. The experimental process involved the reaction of 1,3-Diphenylisobenzofuran(cas: 5471-63-6Computed Properties of C20H14O)

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used to study the single crystal molecular structure and solution photophysical properties of DPBF.Computed Properties of C20H14O

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Bayat, Fahimeh’s team published research in International Journal of Biological Macromolecules in 2020 | CAS: 5471-63-6

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used to study the single crystal molecular structure and solution photophysical properties of DPBF.Computed Properties of C20H14O

《Design of nanostructure chitosan hydrogels for carrying zinc phthalocyanine as a photosensitizer and difloxacin as an antibacterial agent》 was published in International Journal of Biological Macromolecules in 2020. These research results belong to Bayat, Fahimeh; Karimi, Ali Reza; Adimi, Tara. Computed Properties of C20H14O The article mentions the following:

Here, we develop homogeneous hydrogel networks containing zinc tetraamino-phthalocyanine (ZnTAPc) as photosensitizer cross-linked with glutaraldehyde. The crosslinking process occurs via imine bond formation by reaction of NH2 groups of ZnTAPc and chitosan with aldehyde groups of the glutaraldehyde. Insertion of ZnTAPc interestingly increases its solubility in water medium. 2.0% and 4% weight/weight of the ZnTAPc were used with respect to chitosan polymer to generate hydrogel photosensitizer. FT-IR and UV-Vis spectroscopy, SEM, and rheol. measurements were applied to evaluate the properties of the prepared hydrogels. Finally, difloxacin HCl was selected as a fluoroquinolone drug for the assessment of the drug release features of the made hydrogels. The difloxacin release was affected by the amount of ZnTAPc and pH medium. The activity of the hydrogels in photosensitizing process was considered by computing the rate of 1,3-diphenylisobenzofuran adsorption reduction as a singlet oxygen chem. quencher. The experimental process involved the reaction of 1,3-Diphenylisobenzofuran(cas: 5471-63-6Computed Properties of C20H14O)

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used to study the single crystal molecular structure and solution photophysical properties of DPBF.Computed Properties of C20H14O

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Aguilar Suarez, Luis Enrique’s team published research in Physical Chemistry Chemical Physics in 2021 | CAS: 5471-63-6

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used to study the single crystal molecular structure and solution photophysical properties of DPBF.Formula: C20H14O

Aguilar Suarez, Luis Enrique; de Graaf, Coen; Faraji, Shirin published their research in Physical Chemistry Chemical Physics in 2021. The article was titled 《Influence of the crystal packing in singlet fission: one step beyond the gas phase approximation》.Formula: C20H14O The article contains the following contents:

Singlet fission (SF), a multiexciton generation process, has been proposed as an alternative to enhance the performance of solar cells. The gas phase dimer model has shown its utility to study this process, but it does not always cover all the physics and the effect of the surrounding atoms has to be included in such cases. In this contribution, we explore the influence of crystal packing on the electronic couplings, and on the so-called exciton descriptors and electron-hole correlation plots. We have studied three tetracene dimers extracted from the crystal structure, as well as several dimers and trimers of the α and β polymorphs of 1,3-diphenylisobenzofuran (DPBF). These polymorphs show different SF yields. Our results highlight that the character of the excited states of tetracene depends on both the mutual disposition of mols. and inclusion of the environment. The latter does however not change significantly the interpretation of the SF mechanism in the studied systems. For DPBF, we establish how the excited state anal. is able to pinpoint differences between the polymorphs. We observe strongly bound correlated excitons in the β polymorph which might hinder the formation of the 1TT state and, consequently, explain its low SF yield. In the experiment, the researchers used 1,3-Diphenylisobenzofuran(cas: 5471-63-6Formula: C20H14O)

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used to study the single crystal molecular structure and solution photophysical properties of DPBF.Formula: C20H14O

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Lu, Bing’s team published research in Chemical Communications (Cambridge, United Kingdom) in 2021 | CAS: 5471-63-6

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used to study the single crystal molecular structure and solution photophysical properties of DPBF.Category: benzofurans

Lu, Bing; Zhang, Zhecheng; Jin, Danni; Yuan, Xiaolei; Wang, Jin; Ding, Yue; Wang, Yang; Yao, Yong published their research in Chemical Communications (Cambridge, United Kingdom) in 2021. The article was titled 《A-DAD-A fused-ring small molecule-based nanoparticles for combined photothermal and photodynamic therapy of cancer》.Category: benzofurans The article contains the following contents:

New nanoparticles (Y6 NPs) based on the A-DAD-A fused-ring conjugated small mol. Y6 have been prepared for the combined photothermal and photodynamic therapy of cancer. Y6 NPs show excellent light absorption from 300 to 900 nm, a good photothermal conversion efficiency of 57% and reactive oxygen species generation capability. The high photothermal conversion ability and superior photodynamic activity of Y6 NPs endow them with great potential for cancer therapy. After reading the article, we found that the author used 1,3-Diphenylisobenzofuran(cas: 5471-63-6Category: benzofurans)

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used to study the single crystal molecular structure and solution photophysical properties of DPBF.Category: benzofurans

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Li, Man Yi’s team published research in Journal of Cancer Research and Clinical Oncology in 2022 | CAS: 5471-63-6

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used to study the single crystal molecular structure and solution photophysical properties of DPBF.Recommanded Product: 5471-63-6

In 2022,Li, Man Yi; Mi, Le; Meerovich, Gennady; Soe, Thin Wut; Chen, Ting; Than, Ni Ni; Yan, Yi Jia; Chen, Zhi Long published an article in Journal of Cancer Research and Clinical Oncology. The title of the article was 《The biological activities of 5,15-diaryl-10,20-dihalogeno porphyrins for photodynamic therapy》.Recommanded Product: 5471-63-6 The author mentioned the following in the article:

Esophageal cancer is the most common gastrointestinal tumor and is difficult to be eradicated with conventional treatment. Porphyrin-based photosensitizers (PSs) mediated photodynamic therapy (PDT) could kill tumor cells with less damage to normal cells. As the most widely used porphyrin-based photosensitizer in clinics, Photofrin II has excellent anti-tumor effect. However, it has some disadvantages such as weak absorption at near IR region, the complexity of components and prolonged skin photosensitivity. Here series novel 5,15-diaryl-10,20-dihalogeno porphyrin derivatives were afforded and evaluated to develop more effective and safer photosensitizers for tumor therapy. The photophys. properties and singlet oxygen generation rates of 5,15-diaryl-10,20-dihalogeno porphyrins (I1-6, II1-4) were tested. The cytotoxicity of I1-6 and II1-4 were measured by MTT assay. The pathway of cell death was studied by flow cytometry. In vivo photodynamic efficacy of I3 and II2-4 in Eca-109 tumor-bearing BABL/c nude mice were measured and histopathol. anal. were examined 5,15-Diaryl-10,20-dihalogeno porphyrins I1-6 and II1-4 were synthesized. The longest absorption wavelength of these halogenated porphyrins (λmax = 660 nm) displayed a red shift around 30 nm compared to the unhalogenated porphyrins PS1 (λmax = 630 nm). The singlet oxygen generation rates of I1-6 and II1-4 were significantly higher than PS1 and HMME. All PSs mediated PDT showed obvious cytotoxic effect against Eca-109 cells compared to HMME in vitro and in vivo. Among these PSs, II4 exhibited appropriate absorption in the phototherapeutic window, higher 1O2 generation rate (k = 0.0061 s-1), the strongest phototoxicity (IC50 = 0.4 μM), lower dark toxicity, high generation of intracellular ROS in Eca-109 cells and excellent photodynamic anti-tumor efficacy in vivo. Besides, cell necrosis was induced by compound II4 mediated PDT. All new compounds have obvious photodynamic anti-esophageal cancer effects. Among them, the photosensitizer II4 showed excellent efficacy in vitro and in vivo, which has the potential to become a photodynamic anti-tumor drug. In the experiment, the researchers used many compounds, for example, 1,3-Diphenylisobenzofuran(cas: 5471-63-6Recommanded Product: 5471-63-6)

1,3-Diphenylisobenzofuran(cas: 5471-63-6) can be used as a fluorescent probe for detection of superoxide anion radical (O2−) inside the membrane lipid layer by DPBF fluorescence quenching method. 1,3-Diphenylisobenzofuran(DPBF) can be used to study the single crystal molecular structure and solution photophysical properties of DPBF.Recommanded Product: 5471-63-6

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Accomasso, Davide’s team published research in Journal of Materials Chemistry A: Materials for Energy and Sustainability in 2021 | CAS: 5471-63-6

1,3-Diphenylisobenzofuran(cas: 5471-63-6) is a fluorescent dye. 1,3-Diphenylisobenzofuran is the model compound in studies of singlet fission.Application In Synthesis of 1,3-Diphenylisobenzofuran

Application In Synthesis of 1,3-DiphenylisobenzofuranIn 2021 ,《Singlet fission in covalent dimers of methylene-locked 1,3-diphenyl-isobenzofuran: semiclassical simulations of nonadiabatic dynamics》 was published in Journal of Materials Chemistry A: Materials for Energy and Sustainability. The article was written by Accomasso, Davide; Granucci, Giovanni; Persico, Maurizio. The article contains the following contents:

We present surface hopping simulations of the nonadiabatic dynamics in three covalently bound dimers of the methylene-locked 1,3-diphenylisobenzofuran (ML-DPBF) chromophore, a modification of a mol. previously studied exptl. and computationally by Michl et al. (J. C. Johnson and J. Michl, Top. Curr. Chem. (Z), 2017, 375, 80). Our aim is to test the suitability for singlet fission of such dimers, as well as to study how the singlet fission dynamics is affected by the mutual arrangement of chromophores in the covalent assembly. Two of our investigated covalent dimers, namely D1 and D2, are newly designed dimers in which the chromophores are linked by two bridges so as to attain suitable stacking arrangements, while the third one (D0) is a linear dimer in which one -CH2- bridge connects the two chromophore units. From our simulations it turned out that D1 and D2 undergo singlet fission in a sub-picosecond time scale. The final populations of the double triplet state (TT) are large (0.74 and 0.84, resp.), but do not reach the limiting value of 1 because of a persistent exchange with the lowest dark excitonic state. On the other hand, our simulations for D0 indicate that this dimer does not undergo singlet fission in the 4 ps following the photoexcitation, mainly because of the weak interaction between chromophores. Our study, besides indicating the potential suitability for singlet fission of dimers D1 and D2, highlights the impact of the mutual arrangement of chromophores in determining the singlet fission efficiency. In fact, we show the importance of fine tuning not only the effective couplings that permit to populate the TT state, but also the exciton splitting of the lowest singlet states. The experimental part of the paper was very detailed, including the reaction process of 1,3-Diphenylisobenzofuran(cas: 5471-63-6Application In Synthesis of 1,3-Diphenylisobenzofuran)

1,3-Diphenylisobenzofuran(cas: 5471-63-6) is a fluorescent dye. 1,3-Diphenylisobenzofuran is the model compound in studies of singlet fission.Application In Synthesis of 1,3-Diphenylisobenzofuran

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem