Ni2P nanowire arrays grown on Ni foam as an efficient monolithic cocatalyst for visible light dye-sensitized H2 evolution was written by Wang, Fang;Liu, Tongliang;Liu, Zhaoting;Zhang, Zhengguo;Min, Shixiong. And the article was included in Dalton Transactions in 2022.Recommanded Product: Sodium 2′,4′,5′,7′-tetraiodo-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-3′,6′-bis(olate) This article mentions the following:
Nanostructured H2 evolution cocatalysts are able to promote charge separation and thus enhance the efficiency of the photocatalytic H2 evolution reaction (HER). However, the nanosized cocatalyst particles are easily detached from the surfaces of semiconductors or severely aggregated in reaction systems, which not only greatly reduces the photocatalytic HER efficiency during long-term use but also greatly increases the difficulty of recovery. Moreover, powdery cocatalysts have poor compatibility with the scale-up photoelectrochem. devices. In this paper, a monolithic cocatalyst is developed by controllably growing Ni2P nanowire arrays on Ni foam substrate (Ni2P NWAs/NF) via a direct vapor-phase phosphorization method. The grown Ni2P NWAs with high sp. surface areas can not only offer ample active sites for the HER, but also serve as scaffolds for anchoring dye mols. to maximize the light utilization efficiency, which endows the Ni2P NWAs/NF monolithic cocatalyst with excellent HER activity. When sensitized with Erythrosin B (ErB) in triethanolamine (TEOA) solution, the turnover number (TON) of H2 evolution based on ErB reaches 9.7 in 5 h under visible light. Notably, the good structural integrity and inherent magnetism enable the Ni2P NWAs/NF to be easily separated from the reaction solution and excellent catalytic H2 evolution stability over a 45 h cycling reaction. This work presents a new strategy of fabricating monolithic cocatalysts with controllable microstructure and functionalities as well as high activity, durability, and device-compatibility for large-scale solar energy conversion applications. In the experiment, the researchers used many compounds, for example, Sodium 2′,4′,5′,7′-tetraiodo-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-3′,6′-bis(olate) (cas: 16423-68-0Recommanded Product: Sodium 2′,4′,5′,7′-tetraiodo-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-3′,6′-bis(olate)).
Sodium 2′,4′,5′,7′-tetraiodo-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-3′,6′-bis(olate) (cas: 16423-68-0) belongs to benzofurans derivatives. Benzofuran derivatives are one of the most important oxygen-containing heterocycles. In nature, benzofurans have occupied an important role among the plant phenols & several pharmacologically active compounds.Recommanded Product: Sodium 2′,4′,5′,7′-tetraiodo-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-3′,6′-bis(olate)
Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem