Bauer, Christina A. et al. published their research in Nanoscale in 2017 | CAS: 38183-12-9

4-Phenyl-3H,3’H-spiro[furan-2,1′-isobenzofuran]-3,3′-dione (cas: 38183-12-9) belongs to benzofurans derivatives. Benzofuran derivatives have shown many biological activities, including antifungal and antimicrobial properties, and acting as antagonists of H3 receptors and angiotensin II. Benzofurans are stable towards alkali and readily polymerize on treatment with sulfuric acid, due to which they are useful for the preparation of low cost chemically relatively inert resins.Synthetic Route of C17H10O4

A convenient, bio-inspired approach to the synthesis of multi-functional, stable fluorescent silica nanoparticles using poly(ethylene-imine) was written by Bauer, Christina A.;Chi, Gregory;Likens, Olivia Q.;Brown, Sandra M.. And the article was included in Nanoscale in 2017.Synthetic Route of C17H10O4 This article mentions the following:

Branched poly(ethylene-imine) can be tagged with luminescent dyes (e.g., fluorescein isothiocyanate and tetramethylrhodamine isothiocyanate) and used to precipitate spherical silica particles from 10s-to-100s of nm diameter size under mild conditions. These dye-PEI/SiO2 nanoparticles are highly compatible with polar solvents to give bright fluorescent suspensions, and detailed photophys. characterization reveals well-separated dye moieties with an approx. homogeneous dispersion of dye-PEI conjugate throughout the SiO2 matrix. Reaction of PEI amine groups incorporated at the particle surface affords a simple method for post-synthesis functionalization of these materials, and the formation of FITC/Eosin-Y fluorescence resonance energy transfer pair-tagged particles and SiO2@Au core-shell nanocomposites using this strategy is demonstrated. This bio-inspired approach to multi-functional SiO2 nanoparticles provides a range of potential advantages over traditional “inorganic” syntheses of similar materials, as it proceeds through a scalable, single-step reaction using inexpensive reagents, enables efficient incorporation of luminescent species into the resulting particles with very limited dye aggregation, and provides nanoparticles that do not require post-synthesis modification for further conjugation with species of interest. The method offers a simple means to generate complex nanocomposites, whereby a host of desired species can be incorporated both inside and on the surface of biocompatible SiO2 nanoparticles. In the experiment, the researchers used many compounds, for example, 4-Phenyl-3H,3’H-spiro[furan-2,1′-isobenzofuran]-3,3′-dione (cas: 38183-12-9Synthetic Route of C17H10O4).

4-Phenyl-3H,3’H-spiro[furan-2,1′-isobenzofuran]-3,3′-dione (cas: 38183-12-9) belongs to benzofurans derivatives. Benzofuran derivatives have shown many biological activities, including antifungal and antimicrobial properties, and acting as antagonists of H3 receptors and angiotensin II. Benzofurans are stable towards alkali and readily polymerize on treatment with sulfuric acid, due to which they are useful for the preparation of low cost chemically relatively inert resins.Synthetic Route of C17H10O4

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem