Sun, Shan et al. published their research in SmartMat in 2022 | CAS: 1461-15-0

2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0) belongs to benzofurans derivatives. Benzofuran is the “”parent”” of many related compounds with more complex structures. For example, psoralen is a benzofuran derivative that occurs in several plants. They are also prone to polymerisation in the presence of concentrated mineral acids and Lewis acids.SDS of cas: 1461-15-0

Tumor-specific and photothermal-augmented chemodynamic therapy by ferrocene-carbon dot-crosslinked nanoparticles was written by Sun, Shan;Chen, Qiao;Li, Yike;Yu, Yao;Li, Zhongjun;Lin, Hengwei. And the article was included in SmartMat in 2022.SDS of cas: 1461-15-0 This article mentions the following:

Extensive research have been devoted to the exploration of multifunctional theranostic agents for cancer, but the poor tumor specificity and unsatisfactory treatment efficacy are some of the critical obstacles for their clin. translations. Herein, ferrocene-carbon dot-crosslinked nanoparticles (Fc-CD NPs) were designed and fabricated for achieving highly specific and photothermal-augmented chemodynamic therapy (CDT). The Fc-CD NPs were found not only to inherit the immanent fluorescence, photoacoustic, and photothermal properties of carbon dots (CDs), but also be endowed with CDT that could occur selectively in tumor microenvironment (TME) due to the presence of Fc for triggering Fenton reaction. Moreover, the enlarged particle size of Fc-CD NPs facilitated their effective accumulation at tumor sites, thus realizing great improvement for antitumor treatment outcomes. Once docking at tumor and being exposed to 660 nm laser irradiation, significantly amplified CDT effect of Fc-CD NPs was observed due to heat-accelerating generation of reactive oxygen species (ROS). More interestingly, since the produced ROS could in turn alleviate the thermal-resistance of photothermal therapy (PTT), the therapeutic efficiency of integrated PTT and CDT was synergized to the maximum extent. This study on the one hand provides a facile approach to fabricate CDs-based multifunctional theranostic nanoplatform with enhanced tumor accumulation and specificity, on the other hand emphasizes the merits of synergizing mutually beneficial therapeutic modalities for more efficient cancer therapy. In the experiment, the researchers used many compounds, for example, 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0SDS of cas: 1461-15-0).

2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0) belongs to benzofurans derivatives. Benzofuran is the “”parent”” of many related compounds with more complex structures. For example, psoralen is a benzofuran derivative that occurs in several plants. They are also prone to polymerisation in the presence of concentrated mineral acids and Lewis acids.SDS of cas: 1461-15-0

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Lu, Shunyi et al. published their research in Journal of Biomaterials Applications in 2022 | CAS: 1461-15-0

2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0) belongs to benzofurans derivatives. Benzofuran is a core structural unit found in many naturally occurring compounds with multidirectional biological activities. They are also prone to polymerisation in the presence of concentrated mineral acids and Lewis acids.Category: benzofurans

Effect of different structures fabricated by additive manufacturing on bone ingrowth was written by Lu, Shunyi;Jiang, Dongjie;Liu, Shuhao;Liang, Haifeng;Lu, Junren;Xu, Hao;Li, Juan;Xiao, Jian;Zhang, Jian;Fei, Qinming. And the article was included in Journal of Biomaterials Applications in 2022.Category: benzofurans This article mentions the following:

To study the effects of different structures (solid/hollow) and pore diameters (300/600μm) on bone ingrowth. Porous titanium alloy scaffolds (3.2*10.5 mm) were printed using electron beam melting. The implants were divided into either Hollow or Solid Group. The upper half of each implant was printed with a pore diameter of 600μm while the bottom half was printed with a pore diameter μof 300 m. Visualization of the structural morphol. was done using Scanning Electron Microscope (SEM). Cell proliferation was evaluated with the cell counting kit-8 assay and live/dead staining assay. The different lateral femoral condyles of 15 New Zealand rabbits were implanted with different groups of scaffolds. The rabbits were randomly sacrificed at the 4th, 8th, and 12th week postoperatively. Bone mineral d. (BMD) and bone volume fraction (BV/TV) evaluation was completed by quant. Micro-Computed Tomog. (Micro-CT). Tissue histol. were stained with toluidine blue to observe bone ingrowth under an optical microscope, and the percentage of new bone area were calculated using Image Pro-Plus 6.0. SEM images showed a significant decrease in residual powder in the hollow implant and cell studies showed no obvious cytotoxicity for the Ti6Al4V scaffolds. Micro-CT reconstruction revealed high levels of new bone formation around the scaffolds. The trabeculae around the implants showed a gradual increase with each week, and new bone filled the scaffold pores gradually. BMD, BV/TV, and tissue histol. revealed the 300μm pore diameter is more conducive to bone ingrowth than the 600μm (p <.05). Our study revealed that Ti6Al4V implants with hollow structure could reduce the residual metal powder and implants with 300μm pore diameter were more effective on bone formation than a 600μm. In the experiment, the researchers used many compounds, for example, 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0Category: benzofurans).

2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0) belongs to benzofurans derivatives. Benzofuran is a core structural unit found in many naturally occurring compounds with multidirectional biological activities. They are also prone to polymerisation in the presence of concentrated mineral acids and Lewis acids.Category: benzofurans

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Suraiya, Anisha B. et al. published their research in Translational Oncology in 2022 | CAS: 1461-15-0

2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0) belongs to benzofurans derivatives. Benzofuran is a core structural unit found in many naturally occurring compounds with multidirectional biological activities. Benzofurans have also made significant and distinctive contributions to biology. They exhibit several biological activities that range from antiviral, antimicrobial, antitumor, anti-inflammatory.Product Details of 1461-15-0

Micro-hydrogel injectables that deliver effective CAR-T immunotherapy against 3D solid tumor spheroids was written by Suraiya, Anisha B.;Evtimov, Vera J.;Truong, Vinh X.;Boyd, Richard L.;Forsythe, John S.;Boyd, Nicholas R.. And the article was included in Translational Oncology in 2022.Product Details of 1461-15-0 This article mentions the following:

Chimeric antigen receptor (CAR-) T cells are revolutionizing cancer treatment, as a direct result of their clin. impact on the treatment of hematol. malignancies. However for solid tumors, CAR-T cell therapeutic efficacy remains limited, primarily due to the complex immunosuppressive tumor microenvironment, inefficient access to tumor cells and poor persistence of the killer cells. In this in vitro study, an injectable, gelatin-based micro-hydrogel system that can encapsulate and deliver effective CAR-T therapy is investigated. CAR-T cells targeting TAG-72, encapsulated in these microgels possessed high viability (> 87%) after 7 days, equivalent to those grown under normal expansion conditions, with retention of the T cell phenotype and functionality. Microgel recovered CAR-T cells demonstrated potent on-target cytotoxicity against human ovarian cancer in vitro and on three-dimensional tumor spheroids, by completely eliminating tumor cells. The gelatin-based micro-hydrogels have the potential to serve as carrier systems to augment CAR-T immunotherapeutic treatment of solid tumors. In the experiment, the researchers used many compounds, for example, 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0Product Details of 1461-15-0).

2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0) belongs to benzofurans derivatives. Benzofuran is a core structural unit found in many naturally occurring compounds with multidirectional biological activities. Benzofurans have also made significant and distinctive contributions to biology. They exhibit several biological activities that range from antiviral, antimicrobial, antitumor, anti-inflammatory.Product Details of 1461-15-0

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Ding, Wenping et al. published their research in Experimental Cell Research in 2021 | CAS: 1461-15-0

2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0) belongs to benzofurans derivatives. Benzofuran derivatives are one of the most important oxygen-containing heterocycles. Benzofurans have also made significant and distinctive contributions to biology. They exhibit several biological activities that range from antioxidant, antitubercular, antiplasmodial, insecticidal.Name: 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid

Mast1 mediates radiation-induced gastric injury via the P38 MAPK pathway was written by Ding, Wenping;Lu, Yuanyuan;Zhou, Aibin;Chen, Yihong;Wang, Zhaoxia;Wang, Limei;Tian, Ye. And the article was included in Experimental Cell Research in 2021.Name: 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid This article mentions the following:

Radiation-induced gastric injury is a serious adverse effect and reduces the efficacy of radiotherapy treatment. However, the mechanisms underlying radiation-induced stomach injury remain unclear. Here, mouse stomach and gastric epithelial cells were irradiated with different doses of X-ray radiation. The results showed that radiation induced gastric injury in vivo and in vitro. Differentially expressed functional mRNAs in irradiation-induced gastric tissues were screened from the Gene Expression Omnibus (GEO) database. We found that the expression of microtubule-associated serine/threonine kinase 1 (Mast1) was downregulated in mouse gastric tissues and gastric epithelial cells after irradiation Furthermore, functional assays showed that knockdown of Mast1 inhibited growth and promoted apoptosis in gastric epithelial cells, while overexpression of Mast1 protected gastric epithelial cells from radiation damage. Mechanistically, Mast1 neg. regulated radiation-induced injury in gastric epithelial cells by inhibiting the activation of P38. The apoptosis caused by knockdown of Mast1 in gastric epithelial cells could be partially reversed by the P38 inhibitor SB203580. Moreover, data from several gastric cancer cell lines and online databases revealed that Mast1 was not involved in the development of gastric cancer. Collectively, our findings demonstrated that Mast1 is essential for radiation-induced gastric injury, providing a promising prognostic and therapeutic target. In the experiment, the researchers used many compounds, for example, 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0Name: 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid).

2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0) belongs to benzofurans derivatives. Benzofuran derivatives are one of the most important oxygen-containing heterocycles. Benzofurans have also made significant and distinctive contributions to biology. They exhibit several biological activities that range from antioxidant, antitubercular, antiplasmodial, insecticidal.Name: 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Teng, Yu-Ning et al. published their research in European Journal of Pharmaceutics and Biopharmaceutics in 2022 | CAS: 1461-15-0

2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0) belongs to benzofurans derivatives. Benzofuran derivatives have shown many biological activities, including antifungal and antimicrobial properties, and acting as antagonists of H3 receptors and angiotensin II. Benzofurans have also made significant and distinctive contributions to biology. They exhibit several biological activities that range from antiviral, antimicrobial, antitumor, anti-inflammatory.Name: 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid

Repositioning application of polyoxyethylene (20) sorbitan monooleate on ocular drug resistance and cancer multi-drug resistance by inhibiting the ATPase activity of human multidrug resistance protein 1 and P-glycoprotein was written by Teng, Yu-Ning;Chen, Li-Hung;Chen, Yi-Hung. And the article was included in European Journal of Pharmaceutics and Biopharmaceutics in 2022.Name: 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid This article mentions the following:

Drug efflux transporters were highly related to the clin. drug resistance issues, such as cancer multi-drug resistance (MDR) and ocular drug resistance. In the present study, with the focus on human multi-drug resistance protein 1 (MRP1) and P-glycoprotein (P-gp), the inhibitory kinetics of polyoxyethylene (20) sorbitan monooleate (Tween 80) on both drug binding sites and ATPase were in-depth evaluated. We used the stable-cloned ABCB1/Flp-In-293 and ABCC1/Flp-In-293 cell lines, and inside-out membrane vesicles for underlying mechanisms investigation while used the drug induced cancer MDR cell line KB/VIN and human retinal pigmented epithelium cell line ARPE-19 for efficacy evaluation. Results showed that Tween 80 exhibited non-competitive inhibition on the doxorubicin efflux of P-gp and MRP1, with the inhibitory affinity 0.00195% (14.89μM) and 0.00245% (18.7μM), resp. Tween 80 inhibited the basal ATPase activity of P-gp and MRP1 in a dose-dependent manner (0.0002-0.02%) and demonstrated significant reversing effects on the doxorubicin, paclitaxel, and vincristine resistance at the concentration of 0.001% (7.63μM). This was the first thorough study revealing the interactions between Tween 80 and P-gp or MRP1 at a mol. level and these findings suggested that Tween 80 was a potential candidate for future combinatorial regimens applied in the drug resistance issue. In the experiment, the researchers used many compounds, for example, 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0Name: 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid).

2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0) belongs to benzofurans derivatives. Benzofuran derivatives have shown many biological activities, including antifungal and antimicrobial properties, and acting as antagonists of H3 receptors and angiotensin II. Benzofurans have also made significant and distinctive contributions to biology. They exhibit several biological activities that range from antiviral, antimicrobial, antitumor, anti-inflammatory.Name: 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Wang, Ruoning et al. published their research in Colloids and Surfaces, B: Biointerfaces in 2022 | CAS: 1461-15-0

2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0) belongs to benzofurans derivatives. Benzofuran is the “”parent”” of many related compounds with more complex structures. For example, psoralen is a benzofuran derivative that occurs in several plants. They are also prone to polymerisation in the presence of concentrated mineral acids and Lewis acids.Name: 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid

Tumor-derived exosomes reversing TMZ resistance by synergistic drug delivery for glioma-targeting treatment was written by Wang, Ruoning;Liang, Qifan;Zhang, Xinru;Di, Zhenning;Wang, Xiaohong;Di, Liuqing. And the article was included in Colloids and Surfaces, B: Biointerfaces in 2022.Name: 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid This article mentions the following:

Temozolomide (TMZ), as the first-line chemotherapeutic agent, relies on inducing DNA methylation of O6-guanine for treating glioma. However, the survival time of patients are hardly exceeded 14.5 mo, attributing to inevitable drug resistance and systematic toxicity after long-term administration. Herein, reassembly-exosomes (R-EXO) deriving from homologous glioma cells is proposed to carry TMZ and Dihydrotanshinone (DHT) for reversing drug resistance and enhancing lesions-targeted drug delivery, defined as R-EXO-TMZ/DHT (R-EXO-T/D). It is found that R-EXO-T/D share various advantages, including preferable blood-brain barrier (BBB)-penetrating ability with nanomemter size, tumor-homing accumulation with homologous effects, as well as potentiated antitumor activity with overcoming TMZ resistance and triggering immune response. This work develops a new strategy for site-specific drug delivery, showing a promising application of drug compatibility in glioma treatment. In the experiment, the researchers used many compounds, for example, 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0Name: 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid).

2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0) belongs to benzofurans derivatives. Benzofuran is the “”parent”” of many related compounds with more complex structures. For example, psoralen is a benzofuran derivative that occurs in several plants. They are also prone to polymerisation in the presence of concentrated mineral acids and Lewis acids.Name: 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Baxani, D. K. et al. published their research in Soft Matter in 2022 | CAS: 1461-15-0

2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0) belongs to benzofurans derivatives. Benzofuran is a core structural unit found in many naturally occurring compounds with multidirectional biological activities. As benzofurans are prone to undergo ring opening of the heterocycle, examples of reduction of this type of aromatics by using dissolving metals are rather scarce.HPLC of Formula: 1461-15-0

Encapsulated droplet interface bilayers as a platform for high-throughput membrane studies was written by Baxani, D. K.;Jamieson, W. D.;Barrow, D. A.;Castell, O. K.. And the article was included in Soft Matter in 2022.HPLC of Formula: 1461-15-0 This article mentions the following:

While it is highly desirable to produce artificial lipid bilayer arrays allowing for systematic high-content screening of membrane conditions, it remains a challenge due to the combined requirements of scaled membrane production, simple measurement access, and independent control over individual bilayer exptl. conditions. Here, droplet bilayers encapsulated within a hydrogel shell are output individually into multi-well plates for simple, arrayed quant. measurements. The afforded exptl. throughput is used to conduct a 2D concentration screen characterizing the synergistic pore-forming peptides Magainin2 and PGLa. Maximal enhanced activity is revealed at equimolar peptide concentrations via a membrane dye leakage assay, a finding consistent with models proposed from NMR data. The versatility of the platform is demonstrated by performing in situ electrophysiol., revealing low conductance pore activity (∼15 to 20 pA with 4.5 pA sub-states). In conclusion, this array platform addresses the aforementioned challenges and provides new and flexible opportunities for high-throughput membrane studies. Furthermore, the ability to engineer droplet networks within each construct paves the way for “lab-in-a-capsule” approaches accommodating multiple assays per construct and allowing for communicative reaction pathways. In the experiment, the researchers used many compounds, for example, 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0HPLC of Formula: 1461-15-0).

2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0) belongs to benzofurans derivatives. Benzofuran is a core structural unit found in many naturally occurring compounds with multidirectional biological activities. As benzofurans are prone to undergo ring opening of the heterocycle, examples of reduction of this type of aromatics by using dissolving metals are rather scarce.HPLC of Formula: 1461-15-0

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Shi, Shuai et al. published their research in Langmuir in 2022 | CAS: 1461-15-0

2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0) belongs to benzofurans derivatives. Benzofurans are only weakly aromatic in nature and they are cleaved by many oxidative and reductive conditions. As benzofurans are prone to undergo ring opening of the heterocycle, examples of reduction of this type of aromatics by using dissolving metals are rather scarce.Application In Synthesis of 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid

Interplay of Fusion, Leakage, and Electrostatic Lipid Clustering: Membrane Perturbations by a Hydrophobic Antimicrobial Polycation was written by Shi, Shuai;Markl, Anja Madleine;Lu, Ziyi;Liu, Runhui;Hoernke, Maria. And the article was included in Langmuir in 2022.Application In Synthesis of 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid This article mentions the following:

Membrane active compounds are able to induce various types of membrane perturbations. Natural or biomimetic candidates for antimicrobial treatment or drug delivery scenarios are mostly designed and tested for their ability to induce membrane permeabilization, also termed leakage. Furthermore, the interaction of these usually cationic amphiphiles with neg. charged vesicles often causes colloidal instability leading to vesicle aggregation or/and vesicle fusion. We show the interplay of these modes of membrane perturbation in mixed phosphatidyl glycerol (PG)/phosphatidyl ethanolamine (PE) by the statistical copolymer MM:CO comprising, both, charged and hydrophobic subunits. MM:CO is a representative of partially hydrophobic, highly active, but less selective antimicrobial polycations. Cryo-electron microscopy indicates vesicle fusion rather than vesicle aggregation upon the addition of MM:CO to neg. charged PG/PE (1:1) vesicles. In a combination of fluorescence-based leakage and fusion assays, there is support for membrane permeabilization and pronounced vesicle fusion activity as distinct effects. To this end, membrane fusion and aggregation were prevented by including lipids with polyethylene glycol attached to their head groups (PEG-lipids). The leakage activity of MM:CO is very similar in the absence and presence of PEG-lipids. Vesicle aggregation and fusion however are largely suppressed. This strongly suggests that MM:CO induces leakage by asym. packing stress because of hydrophobically driven interactions which could lead to leakage. As a further membrane perturbation effect, MM:CO causes lipid clustering in model vesicles. We address potential artifacts and misinterpretations of experiments characterizing leakage and fusion. Addnl. to the leakage activity, the pronounced fusogenic activity of the polymer and potentially of many other similar compounds likely has implications for antimicrobial activity and beyond. In the experiment, the researchers used many compounds, for example, 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0Application In Synthesis of 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid).

2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0) belongs to benzofurans derivatives. Benzofurans are only weakly aromatic in nature and they are cleaved by many oxidative and reductive conditions. As benzofurans are prone to undergo ring opening of the heterocycle, examples of reduction of this type of aromatics by using dissolving metals are rather scarce.Application In Synthesis of 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Wada, Koji et al. published their research in Journal of Natural Medicines in 2022 | CAS: 1461-15-0

2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0) belongs to benzofurans derivatives. Benzofuran is the “”parent”” of many related compounds with more complex structures. For example, psoralen is a benzofuran derivative that occurs in several plants. Introduction of benzofurans in organic synthesis, particularly drug synthesis, involves generally the use of their metalated species as nucleophiles in addition reactions or in metal-catalysed cross-coupling reactions.Recommanded Product: 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid

Bioactivity inspired C19-diterpenoid alkaloids for overcoming multidrug-resistant cancer was written by Wada, Koji;Goto, Masuo;Ohkoshi, Emika;Lee, Kuo-Hsiung;Yamashita, Hiroshi. And the article was included in Journal of Natural Medicines in 2022.Recommanded Product: 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid This article mentions the following:

The pharmacol. activities of C19-diterpenoid alkaloids are related to their basic skeletons (e.g., aconitine-type or lycoctonine-type). Also, few studies have been reported on the chemosensitizing effects of diterpenoid alkaloids. Consequently, this study was aimed at determining the chemosensitizing effects of synthetic derivatives of lycoctonine-type C19-diterpenoid alkaloids on a P-glycoprotein (P-gp)-overexpressing multidrug-resistant (MDR) cancer cell line KB-VIN. The acyl-derivatives of delpheline and delcosine showed moderate cytotoxicity against chemosensitive cancer cell lines. Among non-cytotoxic synthetic analogs (1-14), several derivatives effectively and significantly sensitized MDR cells by interfering with the drug transport function of P-gp to three anticancer drugs, vincristine, paclitaxel, and doxorubicin. The chemosensitizing effect of derivatives 2, 4, and 6 on KB-VIN cells against vincristine were more potent than 5 μM verapamil, and derivatives 4 and 13 were more effective than 5 μM verapamil for paclitaxel. Among them, 2 in particular increased the sensitivity of KB-VIN cells to vincristine by 253-fold. In the experiment, the researchers used many compounds, for example, 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0Recommanded Product: 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid).

2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0) belongs to benzofurans derivatives. Benzofuran is the “”parent”” of many related compounds with more complex structures. For example, psoralen is a benzofuran derivative that occurs in several plants. Introduction of benzofurans in organic synthesis, particularly drug synthesis, involves generally the use of their metalated species as nucleophiles in addition reactions or in metal-catalysed cross-coupling reactions.Recommanded Product: 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem

Suraiya, Anisha B. et al. published their research in Translational Oncology in 2022 | CAS: 1461-15-0

2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0) belongs to benzofurans derivatives. Benzofuran is a core structural unit found in many naturally occurring compounds with multidirectional biological activities. Benzofurans have also made significant and distinctive contributions to biology. They exhibit several biological activities that range from antiviral, antimicrobial, antitumor, anti-inflammatory.Product Details of 1461-15-0

Micro-hydrogel injectables that deliver effective CAR-T immunotherapy against 3D solid tumor spheroids was written by Suraiya, Anisha B.;Evtimov, Vera J.;Truong, Vinh X.;Boyd, Richard L.;Forsythe, John S.;Boyd, Nicholas R.. And the article was included in Translational Oncology in 2022.Product Details of 1461-15-0 This article mentions the following:

Chimeric antigen receptor (CAR-) T cells are revolutionizing cancer treatment, as a direct result of their clin. impact on the treatment of hematol. malignancies. However for solid tumors, CAR-T cell therapeutic efficacy remains limited, primarily due to the complex immunosuppressive tumor microenvironment, inefficient access to tumor cells and poor persistence of the killer cells. In this in vitro study, an injectable, gelatin-based micro-hydrogel system that can encapsulate and deliver effective CAR-T therapy is investigated. CAR-T cells targeting TAG-72, encapsulated in these microgels possessed high viability (> 87%) after 7 days, equivalent to those grown under normal expansion conditions, with retention of the T cell phenotype and functionality. Microgel recovered CAR-T cells demonstrated potent on-target cytotoxicity against human ovarian cancer in vitro and on three-dimensional tumor spheroids, by completely eliminating tumor cells. The gelatin-based micro-hydrogels have the potential to serve as carrier systems to augment CAR-T immunotherapeutic treatment of solid tumors. In the experiment, the researchers used many compounds, for example, 2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0Product Details of 1461-15-0).

2,2′,2”,2”’-(((3′,6′-Dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)bis(methylene))bis(azanetriyl))tetraacetic acid (cas: 1461-15-0) belongs to benzofurans derivatives. Benzofuran is a core structural unit found in many naturally occurring compounds with multidirectional biological activities. Benzofurans have also made significant and distinctive contributions to biology. They exhibit several biological activities that range from antiviral, antimicrobial, antitumor, anti-inflammatory.Product Details of 1461-15-0

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem