Shino, Michael Y. et al. published their research in American Journal of Transplantation in 2022 | CAS: 24280-93-1

(E)-6-(4-Hydroxy-6-methoxy-7-methyl-3-oxo-1,3-dihydroisobenzofuran-5-yl)-4-methylhex-4-enoic acid (cas: 24280-93-1) belongs to benzofurans derivatives. Benzofuran derivatives have shown many biological activities, including antifungal and antimicrobial properties, and acting as antagonists of H3 receptors and angiotensin II. Benzofurans have also made significant and distinctive contributions to biology. They exhibit several biological activities that range from antiviral, antimicrobial, antitumor, anti-inflammatory.Formula: C17H20O6

Plasma CXCL9 and CXCL10 at allograft injury predict chronic lung allograft dysfunction was written by Shino, Michael Y.;Todd, Jamie L.;Neely, Megan L.;Kirchner, Jerry;Frankel, Courtney W.;Snyder, Laurie D.;Pavlisko, Elizabeth N.;Fishbein, Gregory A.;Schaenman, Joanna M.;Mason, Kristen;Kesler, Karen;Martinu, Tereza;Singer, Lianne G.;Tsuang, Wayne;Budev, Marie;Shah, Pali D.;Reynolds, John M.;Williams, Nikki;Robien, Mark A.;Palmer, Scott M.;Weigt, S. Sam;Belperio, John A.. And the article was included in American Journal of Transplantation in 2022.Formula: C17H20O6 This article mentions the following:

Histopathol. lung allograft injuries are putative harbingers for chronic lung allograft dysfunction (CLAD). However, the mechanisms responsible are not well understood. CXCL9 and CXCL10 are potent chemoattractants of mononuclear cells and potential propagators of allograft injury. We hypothesized that these chemokines would be quantifiable in plasma, and would associate with subsequent CLAD development. In this prospective multicenter study, we evaluated 721 plasma samples for CXCL9/CXCL10 levels from 184 participants at the time of transbronchial biopsies during their first-year post-transplantation. We determined the association between plasma chemokines, histopathol. injury, and CLAD risk using Cox proportional hazards models. We also evaluated CXCL9/CXCL10 levels in bronchoalveolar lavage (BAL) fluid and compared plasma to BAL with respect to CLAD risk. Plasma CXCL9/CXCL10 levels were elevated during the injury patterns associated with CLAD, acute rejection, and acute lung injury, with a dose-response relationship between chemokine levels and CLAD risk. Importantly, there were strong interactions between injury and plasma CXCL9/CXCL10, where histopathol. injury associated with CLAD only in the presence of elevated plasma chemokines. We observed similar associations and interactions with BAL CXCL9/CXCL10 levels. Elevated plasma CXCL9/CXCL10 during allograft injury may contribute to CLAD pathogenesis and has potential as a minimally invasive immune monitoring biomarker. In the experiment, the researchers used many compounds, for example, (E)-6-(4-Hydroxy-6-methoxy-7-methyl-3-oxo-1,3-dihydroisobenzofuran-5-yl)-4-methylhex-4-enoic acid (cas: 24280-93-1Formula: C17H20O6).

(E)-6-(4-Hydroxy-6-methoxy-7-methyl-3-oxo-1,3-dihydroisobenzofuran-5-yl)-4-methylhex-4-enoic acid (cas: 24280-93-1) belongs to benzofurans derivatives. Benzofuran derivatives have shown many biological activities, including antifungal and antimicrobial properties, and acting as antagonists of H3 receptors and angiotensin II. Benzofurans have also made significant and distinctive contributions to biology. They exhibit several biological activities that range from antiviral, antimicrobial, antitumor, anti-inflammatory.Formula: C17H20O6

Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem