Separation and Purification Technology | Cas: 38103-06-9 was involved in experiment

5,5′-((Propane-2,2-diylbis(4,1-phenylene))bis(oxy))bis(isobenzofuran-1,3-dione)(cas: 38103-06-9) is a diallyl based epoxy modification agent that blends with the resin to improve the mechanical property of the epoxy material.Related Products of 38103-06-9 It is majorly used in novalac based resins, which can be further cured with bismaleimides (BMI) for aerospace, electronics and wireless communication based applications.

Nocon-Szmajda, Klaudia;Wolinska-Grabczyk, Aleksandra;Jankowski, Andrzej;Szeluga, Urszula;Wojtowicz, Magdalena;Konieczkowska, Jolanta;Hercog, Anna published 《Gas transport properties of mixed matrix membranes based on thermally rearranged poly(hydroxyimide)s filled with inorganic porous particles》 in 2020. The article was appeared in 《Separation and Purification Technology》. They have made some progress in their research.Related Products of 38103-06-9 The article mentions the following:

In this study, we explore the use of two kinds of inorganic sieves, microporous MFI zeolite and mesoporous MCM-41 silica, as fillers to enhance the gas transport characteristics of thermally rearranged (TR) poly(hydroxyimides) (HPI). To the best of our knowledge, this is the first report on the use of these fillers to modify properties of TR HPIs, except for our previous research on MCM-41 filled HPIs based on BPADA dianhydride. In this work, 6FDA-HAB and BPADA-HAB varying in gas permeability and properties were selected as matrixes for preparation of mixed matrix membranes (MMM) with the aim of studying the effect of both the kind of filler and a matrix on thermal rearrangement and properties of the resultant TR-MMMs. In addition to pure gas permeability measurements, HPIs and MMMs were examined by WAXD, SEM, TGA, DMA, and tensile tests before and after thermal rearrangement. For all MMM precursors, the permeability increased in proportion to the filler loading (e.g. by 1.2-4.4 times for O2) while selectivity remained virtually the same. The same effect of improved permeability and maintained selectivity was observed for the series of TR-MMMs; for example, TR-MMM based on 6FDA and filled with 7 wt% of MCM-41 exhibited 6.7 fold higher O2 permeability over its filled precursor. The permeation properties of the filled membranes showed a strong dependence on both the kind of matrix and filler. The addition of MCM-41 particles to BPADA-HAB increased permeability more than the incorporation of the similar amount of MFI ones, while the contrary was true for 6FDA-HAB. The best result, comprising the position on the upper bound for He/N2, has been achieved for 6FDA-HAB filled with 25 wt% of MFI, whereas its TR analog showed the highest 20.4 fold permeability improvement. And 5,5′-((Propane-2,2-diylbis(4,1-phenylene))bis(oxy))bis(isobenzofuran-1,3-dione) (cas: 38103-06-9) was used in the research process.

5,5′-((Propane-2,2-diylbis(4,1-phenylene))bis(oxy))bis(isobenzofuran-1,3-dione)(cas: 38103-06-9) is a diallyl based epoxy modification agent that blends with the resin to improve the mechanical property of the epoxy material.Related Products of 38103-06-9 It is majorly used in novalac based resins, which can be further cured with bismaleimides (BMI) for aerospace, electronics and wireless communication based applications.

Reference:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem