UPLC-MS/MS Assay for Quantification of Wedelolactone and Demethylwedelolactone in Rat Plasma and the Application to a Preclinical Pharmacokinetic Study. was written by Wang, Bao-E;Zhang, Lin-Tao;Yang, Sheng-Bao;Xu, Zeng-Liang. And the article was included in Combinatorial chemistry & high throughput screening in 2022.SDS of cas: 524-12-9 The following contents are mentioned in the article:
AIMS AND OBJECTIVE: Wedelolactone and demethylwedelolactone are the two major coumarin constituents of Herba Ecliptae. The objective of this work was to develop and validate a sensitive, rapid, and robust UPLC-MS/MS method for the simultaneous quantification of wedelolactone and demethylwedelolactone in rat plasma. MATERIALS AND METHODS: Wedelolactone and demethylwedelolactone were extracted from rat plasma by protein precipitation with acetonitrile. Electrospray ionization in negative mode and selected reaction monitoring (SRM) were used for wedelolactone and demethylwedelolactone at the transitions m/z 312.8â?98.0 and m/z 299.1â?70.6, respectively. Chromatographic separation was conducted on a Venusil C18 column (50 mm à 2.1 mm, 5 μm) with isocratic elution of acetonitrile-0.1% formic acid in water (55:45, v/v) at a flow rate of 0.3 mL/min. A linear range was observed over the concentration range of 0.25-100 ng/mL for wedelolactone and demethylwedelolactone. RESULTS: They reached their maximum plasma concentrations (Cmax, 74.9±13.4 ng/mL for wedelolactone and 41.3±9.57 ng/mL for demethylwedelolactone) at the peak time (Tmax) of 0.633 h and 0.800 h, respectively. The AUC0-t value of wedelolactone (260.8±141.8 ng h/mL) was higher than that of demethylwedelolactone (127.4±52.7 ng h/mL) by approximately 2-fold, whereas the terminal elimination half-life (t1/2) of wedelolactone (2.20±0.59 h) showed the approximately same as that of demethylwedelolactone (2.08±0.69 h). CONCLUSION: Based on full validation according to US FDA guidelines, this UPLC-MS/MS method was successfully applied to a pharmacokinetic study in rats. This study involved multiple reactions and reactants, such as 1,8,9-Trihydroxy-3-methoxy-6H-benzofuro[3,2-c]chromen-6-one (cas: 524-12-9SDS of cas: 524-12-9).
1,8,9-Trihydroxy-3-methoxy-6H-benzofuro[3,2-c]chromen-6-one (cas: 524-12-9) belongs to benzofurans derivatives. Benzofuran derivatives have shown many biological activities, including antifungal and antimicrobial properties, and acting as antagonists of H3 receptors and angiotensin II. Substituted benzofurans find applications such as fluorescent sensors, oxidants, in drug discovery, and in another field of chemistry and agriculture.SDS of cas: 524-12-9
Referemce:
Benzofuran – Wikipedia,
Benzofuran | C8H6O – PubChem